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Neural networks underpin many of the best-performing AI 
systems, including speech recognizers on smartphones or 
Google’s latest automatic translator 

The tremendous success of these applications has spurred the 
interest in applying neural networks in a variety of other fields 
including finance, economics, operations, marketing, medicine, 
and many others 

In finance, researchers have developed several promising 
applications in risk management, asset pricing, and 
investment management 
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First wave: single-layer nets 
Financial time series: White (1989), Kuan & White (1994) 
Nonlinearity testing: Lee, White & Granger (1993) 
Economic forecasting: Swanson & White (1997) 
Stock market prediction: Brown, Goetzmann & Kumar (1998) 
Pricing kernel modeling: Bansal & Viswanathan (1993) 
Option pricing: Hutchinson, Lo & Poggio (1994) 
Credit scoring: Desai, Crook & Overstreet (1996) 

Second wave: multi-layer nets (deep learning) 
Mortgages: Sirignano, Sadhwani & Giesecke (2016) 
Order books: Sirignano (2016), Cont and Sirignano (2018) 
Portfolio selection: Heaton, Polson & Witte (2016) 
Returns: Chen, Pelger & Zhu (2018), Gu, Kelly & Xiu (2018) 
Hedging: Halperin (2018), Bühler, Gonon & Teichmann (2018) 
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The success of NNs is largely due to their amazing 
approximation properties, superior predictive performance, and 
their scalability 

A major caveat however is model explainability: NNs are 
perceived as black boxes that permit little insight into how 
predictions are being made 

Key inference questions are difficult to answer 
Which input variables are statistically significant? 
If significant, how can a variable’s impact be measured? 
What’s the relative importance of the different variables? 
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This issue is not just academic; it has slowed the implementation 
of NNs in financial practice, where regulators and other 
stakeholders often insist on model explainability 

Credit and insurance underwriting (regulated) 
Transparency of underwriting decisions 

Investment management (unregulated) 
Transparency of portfolio designs 
Economic rationale of trading decisions 
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We develop a pivotal test to assess the statistical significance 
of the input variables of a NN 

Focus on single-layer feedforward networks 
Focus on regression setting 

We propose a gradient-based test statistic and study its 
asymptotics using nonparametric techniques 

Asymptotic distribution is a mixture of χ
2 laws 

The test enables one to address key inference issues: 
Assess statistical significance of variables 
Measure the impact of variables 
Rank order variables according to their influence 

Simulation and empirical experiments illustrate the test 
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Regression model Y = f0(X )+ � 
X ∈X ⊂ R

d is a vector of d feature variables with law P 
f0 : X→ R is an unknown deterministic C 

1
-function 

� is an error variable: � X , E(�)=0, E(�
2
)= σ

2 

|=< ∞ 

To assess the significance of a variable Xj , we consider 
sensitivity-based hypotheses: 

Z�∂f0(x)�2 
H0 : λj := dµ(x)=0 

X ∂xj 

HA : λj 6=0 

Here, µ is a positive weight measure 
A typical choice is µ = P and then λj = E[(

∂f 
∂ 
0( 
x
X

j 

) 
)
2
] 



Intuition 
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Suppose the function f0 is linear (multiple linear regression) 

dX 
f0(x)= βk xk 

k=1 

Then λj ∝ βj 2 , the squared regression coefficient for Xj , and 
the null takes the form H0 : βj =0(→ t-test) 

∂f0(x)
In the general nonlinear case, the derivative depends on ∂xj

R ∂f0(x)
x, and λj =( )2dµ(x) is a weighted average X ∂xj 



Neural network 
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We study the case where the unknown regression function f0 

is modeled by a single-layer feedforward NN 

A single-layer NN f is specified by a bounded activation 
function ψ on R and the number of hidden units K : 

KX > f (x)= b0 + bk ψ(a0,k + ak x) 
k=1 

where b0, bk , a0,k ∈ R and ak ∈ Rd are to be estimated 

Functions of the form f are dense in C (X ) (they are universal 
approximators): choosing K large enough, f can approximate 
f0 to any given precision 



Neural network: d 4 features, K 3 hidden units = =
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Input Layer Hidden Layer Output Layer 

Output 



Sieve estimator of neural network 
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We use n i.i.d. samples (Yi , Xi ) to construct a sieve 
M-estimator fn of f for which K = Kn increases with n 

We assume f0 ∈ Θ = class of C 1 functions on d-hypercube X 
with uniformly bounded Sobolev norm 

Sieve subsets Θn ⊆ Θ generated by NNs f with Kn hidden 
units, bounded L1 norms of weights, and sigmoid ψ 

The sieve M-estimator fn is the approximate maximizer of the P 
empirical criterion function Ln(g)= 

1 n 
l(Yi , Xi , g), ni=1 

where l : R ×X × Θ → R, over Θn: 

Ln(fn) ≥ sup Ln(g) − oP (1) 
g∈Θn 
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Neural network test statistic 

The NN test statistic is given by 
Z� �2 ∂fn(x)

λ
n 
= dµ(x)= φ[fn] j 

X ∂xj 

We will use the asymptotic (n →∞) distribution of λn for 
j 

testing the null since a bootstrap approach would typically be 
too computationally expensive 

1 

2 

Asymptotic distribution of fn 

Functional delta method 

In the large-n regime, due to the universal approximation 
property, we are actually performing inference on the “ground 
truth” f0 (model-free inference) 



Asymptotic distribution of NN estimator 
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Theorem 

Assume that 

dP = νdλ for b ounded and strictly p ositive ν 

The dimension Kn of the NN satisfies K 
2+1/d 
n log Kn = O(n), 

The loss function l(y, x, g) = −
1 
2 (y − g(x))2 . 

Then 
rn(fn − f0) =⇒ h

? 

in (Θ, L2(P)) where 

rn = � n 
log n � d+1 

2(2d+1) 

and h? is the argmax of the Gaussian pro cess {Gf : f ∈ Θ} with 
mean zero and Cov(Gs , Gt ) = 4σ2E(s(X )t(X )). 
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rn is the estimation rate of the NN (Chen and Shen (1998)): 

−1 EX [(fn(X ) − f0(X ))
2
]= OP (r ) n 

assuming the number of hidden units Kn is chosen such that 
2+1/d

Kn log Kn = O(n) 
Proof uses empirical process arguments 

Estimation rate implies tightness of hn = rn(fn − f0) 
Rescaled and shifted criterion function converges weakly to 
Gaussian process 
Gaussian process has a unique maximum at h

? 

Argmax continuous mapping theorem 



Asymptotic distribution of test statistic 
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Theorem 

Under the conditions of Theorem 1 and the null hypothesis, 

r 2 
n λ

n 
j =⇒ 

Z 

X 

�∂h?(x) 
∂xj 

�2 
dµ(x) 



Empirical test statistic 
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Theorem 

Assume µ = P so that the test statistic 

λn 
j = EX 

��∂fn(X ) 
∂xj 

�2 
� 

. 

Under the conditions of Theorem 1 and the null hypothesis, the 
empirical test statistic satisfies 

r 2 
n n −1 

nX 

i=1 

�∂fn(Xi ) 
∂xj 

�2 
=⇒ EX 

��∂h?(X ) 
∂xj 

�2 
� 



Identifying the asymptotic distribution 
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Theorem 

Take µ = P. Let {φi } be an orthonormal basis of Θ. If that basis 
is C 1 and stable under differentiation, then 

EX 

��∂h?(X ) 
∂xj 

�2 
� 

= 
B2 P∞ 
i=0 

χ2 
i 

d2 
i 

∞X 

i=0 

α2 
i ,j 

d4 
i 

χ2 
i , 

where {χ2 
i } are i.i.d. samples from the chi-square distribution, and 

where αi ,j ∈ R satisfies ∂φi 
∂xj 
= αi ,j φk(i) for some k : N → N, and 

the di ’s are certain functions of the αi ,j ’s. 
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Truncate the infinite sum at some finite order N 

Draw samples from the χ2 distribution to construct a sample 
of the approximate limiting law 

Repeat m times and compute the empirical quantile QN,m at 
level α ∈ (0, 1) of the corresponding samples 

If m = mN →∞ as N →∞, then QN,mN is a consistent 
estimator of the true quantile of interest 

Reject H0 if λn (1 − α) such that the test will be j > QN,mN 

asymptotically of level α: 

�� 
PH0 λj

n 
> QN,mN (1 − α) ≤ α 



Simulation study 
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8 variables: 

X =(X1,..., X8) ∼ U(−1, 1)
8 

Ground truth: 

Y =8+ X 
2 
+ X2X3 + cos(X4) + exp(X5X6)+0.1X7 + � 1 

where � ∼ N(0, 0.012) and X8 has no influence on Y 

Training (via TensorFlow): 100,000 samples (Yi , Xi ) 
Validation, Testing: 10,000 samples each 

Out-of-sample MSE: 

Mo del Mean Squared Error 
NN with K = 25 3.1 · 10−4 ∼ Var(�) 
Linear Regression 0.35 



Linear model fails to identify significant variables 
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Variable coef std err t P > |t|
const 10.2297 0.002 5459.250 0.000 
1 -0.0031 0.003 -0.964 0.335 
2 0.0051 0.003 1.561 0.118 
3 -0.0026 0.003 -0.800 0.424 
4 0.0003 0.003 0.085 0.932 
5 0.0016 0.003 0.493 0.622 
6 -0.0033 0.003 -1.035 0.300 
7 0.0976 0.003 30.059 0.000 
8 -0.0018 0.003 -0.563 0.573 

Only the intercept and the linear term 0.1X7 are identified as 
significant. The irrelevant X8 is correctly identified as insignificant. 



NN test statistic (5% level; 100 exp eriments; Fourier basis) 
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Variable Test Statistic Power/Size 
1 1.310 1 
2 0.332 1 
3 0.331 1 
4 0.267 1 
5 0.480 1 
6 0.479 1 
7 1.010 · 10−2 (= 0.12) 1 
8 4.200·10−6 0.13 > 0.05 

Size: asymptotic distribution tends to underestimate the 
variance of the finite sample distribution of the test statistic 

Efficiency: gradient (TensorFlow), no re-fitting required 

Robustness: insensitive to correlated feature data 
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Data: 120+ million housing sales from county registrar of 
deed offices across the US (source: CoreLogic) 

Sample period: 1970 to 2017 

Geographical area: Merced County, CA; 76,247 samples 

Prediction of Y = log sale price 

Variables X (d = 68): Bedrooms, Full Baths, 
Last Sale Amount, N Originations, N Past Sales, Sale Month, 
SqFt, Stories, Tax Amount, Time Since Prior Sale, etc. 

Training and gradients via TensorFlow, Adam 

Validation (70/20/10 split): K = 150 nodes, L1 weight 10−5 

Test MSE is 0.45 



Application: House price valuation 
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Top 10 significant (5%) variables (out of 68) 
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Variable Name Test Statistic 
Last Sale Amount 1.640 

Tax Land Square Footage 1.615 
Sale Month No 1.340 
Tax Amount 0.383 

Last Mortgage Amount 0.104 
Tax Assd Total Value 0.081 

Tax Improvement Value Calc 0.072 
Tax Land Value Calc 0.069 

Year Built 0.068 
SqFt 0.056 
... ... 
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We develop a computationally efficient, pivotal significance 
test for neural networks 

Assess the impact of feature variables on the prediction 
Rank variables according to their predictive importance 

This opens up a broader range of applications of NNs in 
financial practice 

Ongoing work 
Treatment of NN classifiers and deep networks 
Cross derivatives for testing interactions between variables 
Alternative approaches 
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Example 

Suppose the elements of X are i.i.d. uniform on [−1, 1] 

Using the Fourier basis, the limiting distribution takes the form 

2π2
B2 X nj 

χ
2

P χ2 n, 
n d4 

n n∈Nd
d2 n∈Nd 
n 

n =(n1, n2 ..., nj ,..., nd )
PQd

d
2 π)

2αk 
n = |α|≤b 

d c+2 k=1(nnk 
2 

{χ
2
}n∈Nd are i.i.d. chi-square variables n 



Computing the asymptotic distribution 
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We note that Θ is a subspace of the Hilbert space L2(P) 
which admits an orthonormal basis {φi }∞ 

i=0 

If this basis is C 1 and stable under differentiation, i.e. if there 
are a real αi,j and a mapping k : N → N such that 

∂φi 
= αi,j φk(i),

∂xj 

then there exists an invertible operator D such that 

∞X 
kf k

2 
k,2 = kDf k

2 
L2(P) = di 

2
hf ,φi i

2 
L2(P) 

i=0 

where the di 0s are certain functions of the αi,j ’s 


