Towards Explainable Al: Significance Tests for Neural Networks

Kay Giesecke

Advanced Financial Technologies Laboratory Stanford University

people.stanford.edu/giesecke/ fintech.stanford.edu

Joint work with Enguerrand Horel (Stanford)

sıəyło Kuem pue

 (8T0Z) n!X 又 К

 (̊u!uлеә dәәр) sұәи ләКеן-!!

 ¿pəınseəu әq 子כedu！s，əqе！̣ел e ueכ моч＇子ueכ！f！usi！s fl •

 әле sNN ：Kł！！！qeu！eןdxə ןәрои s！ләләмоч ұеәлеэ ло〔еш \forall •
K!!!qеןeэs ג!əч7
 ภu！

Kł!!!qеu!eןdхә ןәрои ио 7 s!su! иәұо sıәрןочәуеұs

$$
\begin{array}{r}
0 \neq!_{Y} \quad:{ }^{\forall} H \\
0=(x) r p_{Z}\left(\frac{r_{X \varrho}}{(x) 0_{\ell \varrho}}\right)^{\mathcal{X}} \int=:!_{Y} \quad: 0_{H}
\end{array}
$$

:səsəчłodKч pəseq-Кұ!^!! ! suəs

uo!
 $\ni+(X){ }^{0} \neq \wedge$ 人 ןрош ио!sรəляəәу

pue " X גоя диә!!!

$$
y^{4} x^{y} g \overbrace{p}^{\stackrel{\mathrm{I}=y}{<}}=(x)_{f}{ }_{f}
$$

uo!s!jəдd uәл! s Kue of ${ }^{\circ} \mathrm{f}$

$$
\left(x_{\perp}^{y} e+y^{\prime} 0 e\right) \not \lambda^{y} q \underbrace{\stackrel{I}{\zeta}+y}_{y}+{ }^{0} q=(x)_{f}
$$

Neural network: $d \quad 4$ features, $K \quad 3$ hidden units

$$
\begin{aligned}
& { }^{\text {u }} \text { Өэя }
\end{aligned}
$$

$$
\begin{aligned}
& :^{\prime} \Theta \text { дәло ' } \mathbb{H} \leftarrow \Theta \times \mathcal{X} \times \mathbb{\#}: / \text { әдәчм }
\end{aligned}
$$

punoィ̊,, әчъ ио әэиәдәји! ภи!

рочғәш еұәр ןеuo!łวun」 ©

$$
\begin{aligned}
& {\left[u_{f}\right] \phi=(x) r p_{\tau}\left(\frac{r_{X}}{(x)^{u} f \varrho}\right)^{\mathcal{X}} \int=\check{u}^{Y} Y}
\end{aligned}
$$

$$
\frac{(\mathrm{I}+p) \tau \pi}{\mathrm{L}+\boldsymbol{p}}\left(\frac{u \text { sol }}{u}\right)=u_{1}
$$

$$
\text { ддәчм } \left.\left((d)_{z}\right\rceil \text { ‘ } \Theta\right) \text { u! }
$$

$$
{ }_{*} 4 \Longleftarrow\left(0_{f}-u_{f}\right)^{u_{1}}
$$

иәцュ

 Ω әп！！！sod К КІว！

ұеч7 әunss \forall

سəィəəบ」

шәлоәч7 ภu！ddem snonu！ұuos xem8̊ィ \forall ＊4 7e unu！xem ənb！un e sey ssəoord ue！ssney o ssəวoィd ue！ssney

 squəunßie ssəวoıd ןeכ！！

$$
(u) O={ }^{u} Y \text { ภ๐о }{ }_{p / \tau+\tau^{u}}{ }^{u}
$$

$$
\left({ }_{[-}^{u_{\lambda}}\right) d O=\left[_{乙}\left((X) 0_{f}-(X)^{u} f\right)\right]^{X_{\cdot} \cdot[\text { I }}
$$

：（（866I）иәчS pue иәчว）NN әчł јо әұе» uо！ұеш！ұsә әчł s！${ }_{\lambda}$

Asymptotic distribution of test statistic

Theorem

Under the conditions of Theorem 1 and the null hypothesis,

$$
r_{n}^{2} \lambda_{j}^{n} \Longrightarrow \int_{\mathcal{X}}\left(\frac{\partial h^{\star}(x)}{\partial x_{j}}\right)^{2} d \mu(x)
$$

Empirical test statistic

Theorem

Assume $\mu=P$ so that the test statistic

$$
\lambda_{j}^{n}=\mathbb{E}_{X}\left[\left(\frac{\partial f_{n}(X)}{\partial x_{j}}\right)^{2}\right] .
$$

Under the conditions of Theorem 1 and the null hypothesis, the empirical test statistic satisfies

$$
r_{n}^{2} n^{-1} \sum_{i=1}^{n}\left(\frac{\partial f_{n}\left(X_{i}\right)}{\partial x_{j}}\right)^{2} \Longrightarrow \mathbb{E}_{X}\left[\left(\frac{\partial h^{\star}(X)}{\partial x_{j}}\right)^{2}\right]
$$

Identifying the asymptotic distribution

Theorem

Take $\mu=P$. Let $\left\{\phi_{i}\right\}$ be an orthonormal basis of Θ. If that basis is C^{1} and stable under differentiation, then

$$
\mathbb{E}_{X}\left[\left(\frac{\partial h^{\star}(X)}{\partial x_{j}}\right)^{2}\right]=\frac{B^{2}}{\sum_{i=0}^{\infty} \frac{\chi_{i}^{2}}{d_{i}^{2}}} \sum_{i=0}^{\infty} \frac{\alpha_{i, j}^{2}}{d_{i}^{4}} \chi_{i}^{2}
$$

where $\left\{\chi_{i}^{2}\right\}$ are i.i.d. samples from the chi-square distribution, and where $\alpha_{i, j} \in \mathbb{R}$ satisfies $\frac{\partial \phi_{i}}{\partial x_{j}}=\alpha_{i, j} \phi_{k(i)}$ for some $k: \mathbb{N} \rightarrow \mathbb{N}$, and the d_{i} 's are certain functions of the $\alpha_{i, j}$'s.

$$
o>\left((x-I)^{N \omega ‘} N \delta<{ }_{u}^{\tilde{u}} Y\right)^{0} H_{\mathbb{I}}
$$

меן ภิu!t!w! әұеш!xoıdde әцł Łо

G． 0	ио！s5əд8̊əу גеəu！7
	$\mathrm{GZ}=$ Y 41！M NN
ィоля parenbS ueaw	ןppow

：$\exists \mathrm{SW}$ әोdues－ヶo－ұno

$$
{ }^{\ni}+{ }^{2} X\left[\cdot 0+\left({ }^{9} X^{\varsigma} X\right) \mathrm{dxə}+\left({ }^{\dagger} X\right) \mathrm{soo}+{ }^{\varepsilon} X^{2} X+{ }_{2}^{\mathrm{I}} X+8=\lambda\right.
$$

：чұпィұ punor

$$
{ }_{8}\left(I^{‘} I-\right) \cap \sim\left({ }^{8} X^{\prime \cdots \cdot \tau} X\right)=X
$$

：sə｜qe！ue＾ 8 e

Linear model fails to identify significant variables

Variable	coef	std err	\mathbf{t}	$P>\|t\|$
const	$\mathbf{1 0 . 2 2 9 7}$	0.002	5459.250	$\mathbf{0 . 0 0 0}$
1	-0.0031	0.003	-0.964	0.335
2	0.0051	0.003	1.561	0.118
3	-0.0026	0.003	-0.800	0.424
4	0.0003	0.003	0.085	0.932
5	0.0016	0.003	0.493	0.622
6	-0.0033	0.003	-1.035	0.300
$\mathbf{7}$	$\mathbf{0 . 0 9 7 6}$	0.003	30.059	$\mathbf{0 . 0 0 0}$
$\mathbf{8}$	-0.0018	0.003	-0.563	$\mathbf{0 . 5 7 3}$

Only the intercept and the linear term $0.1 X_{7}$ are identified as significant. The irrelevant X_{8} is correctly identified as insignificant.

S0＇0＜EL＇0	9－0I•00でャ	8
I		L
I	6Lカー	9
I	08t 0	G
I	L9で0	†
I	โદع＇0	ε
I	てદع＇0	乙
I	0IE＇I	I
әz！S／גәмод	ว！ 1 ¢！	әq¢！̣е＾

 LIOZ OF OL6I :pouəəd әןdues

Application: House price valuation

Top 10 significant (5\%) variables (out of 68)

Variable Name	Test Statistic
Last_Sale_Amount	1.640
Tax_Land_Square_Footage	1.615
Sale_Month_No	1.340
Tax_Amount	0.383
Last_Mortgage_Amount	0.104
Tax_Assd_Total_Value	0.081
Tax_Improvement_Value_Calc	0.072
Tax_Land_Value_Calc	0.069
Year_Built	0.068
SqFt	0.056
\ldots	\ldots

$$
\begin{aligned}
& \left(p_{u} \cdot \cdots \rho_{u} \cdot \cdots \tau_{u} \cdot \tau u\right)=u \bullet
\end{aligned}
$$

$$
،(!) \nmid \phi \quad \Gamma!x=\frac{!x \varrho}{!\phi \varrho}
$$

 әләч7 !! ‘ə’! ‘uо!че!

