Towards Explainable AI: Significance Tests for Neural Networks

Kay Giesecke

Advanced Financial Technologies Laboratory Stanford University

people.stanford.edu/giesecke/ fintech.stanford.edu

Joint work with Enguerrand Horel (Stanford)

- Neural networks underpin many of the best-performing Al systems, including speech recognizers on smartphones or Google's latest automatic translator
- The tremendous success of these applications has spurred the interest in applying neural networks in a variety of other fields including finance, economics, operations, marketing, medicine, and many others
- In finance, researchers have developed several promising applications in risk management, asset pricing, and investment management

Literature

- First wave: single-layer nets
- Financial time series: White (1989), Kuan & White (1994)
- Nonlinearity testing: Lee, White & Granger (1993)
 Economic forecasting: Swanson & White (1997)
- Stock market prediction: Brown, Goetzmann & Kumar (1998)
- Pricing kernel modeling: Bansal & Viswanathan (1993)
- Option pricing: Hutchinson, Lo & Poggio (1994)
 Option pricing: Hutchinson, Lo & Poggio (1994)
- Credit scoring: Desai, Crook & Overstreet (1996)
- Second wave: multi-layer nets (deep learning)
- Mortgages: Sirignano, Sadhwani & Giesecke (2016)
 Order books: Sirignano (2016), Cont and Sirignano (2018)
- Portfolio selection: Heaton, Polson & Witte (2016)
- Returns: Chen, Pelger & Zhu (2018), Gu, Kelly & Xiu (2018)
 Hodring: Holorin (2018) Biiblor (2018)
- Hedging: Halperin (2018), Bühler, Gonon & Teichmann (2018)
 Optimal stopping: Becker, Cheridito & Jentzen (2018)
- Treasury markets: Filipovic, Giesecke, Pelger, Ye (2019)
- Real estate: Giesecke, Ohlrogge, Ramos & Wei (2019)
- Insurance: Wüthrich and Merz (2019)

Explainability

their scalability

- The success of NUs is largely due to their amazing
 The success of NUs is largely due to their amazing
- A major caveat however is model explainability: NUs are perceived as black boxes that permit little insight into how
- Key inference questions are difficult to answer
- Which input variables are statistically significant?
- If significant, how can a variable's impact be measured?
- What's the relative importance of the different variables?

This issue is not just academic; it has slowed the implementation of NNs in financial practice, where regulators and other stakeholders often insist on model explainability

- Credit and insurance underwriting (regulated)
- Transparency of underwriting decisions
- Investment management (unregulated)
- Transparency of portfolio designs
- Economic rationale of trading decisions

This paper

- We develop a **pivotal test** to assess the statistical significance of the input variables of a NN
- Focus on single-layer feedforward networks
- Focus on regression setting
- We propose a gradient-based test statistic and study its
 Symptotics using nonparametric techniques
- \bullet Asymptotic distribution is a mixture of $\chi^{\rm 2}$ laws
- The test enables one to address key inference issues:
- Assess statistical significance of variables
- Measure the impact of variables
- Rank order variables according to their influence
- Simulation and empirical experiments illustrate the test

- Kegresion model $Y = f_0(X) + \epsilon$
- A wel drive variables with law teature variables with law P $X \ni X \to X ullet$
- $\mathfrak{h} : \mathfrak{I} \to \mathbb{R}$ is an unknown deterministic \mathcal{C}^1 -function
- ϵ is an error variable: $\epsilon \pm X$, $\mathbb{E}(\epsilon) = 0$, $\mathbb{E}(\epsilon^2) = \sigma^2 < \infty$
- sensitivity-based hypotheses: • To assess the significance of a variable χ_{j} , we consider

$$0 = (x) \eta \rho_{z} \left(\frac{y_{x}}{(x)^{0} \mathcal{U}}\right)^{\mathcal{X}} = : f \chi : \mathcal{U}_{H}$$

Here, μ is a positive weight measure

 $0 \neq ! \vee : \forall \mu$

• A typical choice is $\mu = P$ and then $\lambda_j = \mathbb{E}[(\frac{\partial h_j(\mathbf{X})}{\partial \mathbf{Y}})^2]$

• Suppose the function fo is linear (multiple linear regression)

$$\psi^{\mathbf{x},\mathbf{x},\mathbf{y}} = \sum_{p}^{\mathbf{x}=\mathbf{J}} \partial_{\mathbf{x},\mathbf{x},\mathbf{x}}$$

Then $\lambda_j\propto\beta_j^2,$ the squared regression coefficient for $X_j,$ and the null takes the form $H_0:\beta_j=0\ (\to\ t\text{-test})$

• In the general nonlinear case, the derivative $\frac{\partial \delta_i(x)}{\partial x_j}$ depends on x_i and $\lambda_i = \int_{-\infty}^{\infty} \left(\frac{\partial \tilde{h}_i(x)}{\partial x_j}\right)^2 d\mu(x)$ is a weighted average

, and
$$\lambda_j = \int_{\mathcal{X}} (rac{\partial x_j}{\partial x_j})^2 d\mu(x)$$
 is a weighted average

- We study the case where the unknown regression function for is modeled by a single-layer feedforward NN
- A single-layer NN f is specified by a bounded activation function ψ on $\mathbb R$ and the number of hidden units K:

$$\mathfrak{l}(x)=p_0+\sum_{k=1}^{\mathcal{H}}p_k\psi(a_{0,k}+a_{k-1})$$

where $b_0, b_k, a_{0,k} \in \mathbb{R}$ and $a_k \in \mathbb{R}^d$ are to be estimated

• Functions of the form f are dense in C(X) (they are universal approximators): choosing K large enough, f can approximate f_0 to any given precision

Neural network: d 4 features, K 3 hidden units

- We use *n* i.i.d. samples (Y_i, X_i) to construct a sieve M-estimator f_n of *f* for which $K = K_n$ increases with *n*
- \bullet We assume $f_0\in\Theta=$ class of C^1 functions on $d\text{-hypercube}\ {\cal X}$ with uniformly bounded Sobolev norm
- Sieve subsets $\Theta_n \subseteq \Theta$ generated by NNs f with K_n hidden vits, bounded ψ norms of weights, and sigmoid ψ
- The sieve M-estimator f_n is the approximate maximizer of the empirical criterion function $L_n(g) = \frac{1}{n} \sum_{i=1}^n I(Y_i, X_i, g)$, where $I : \mathbb{R} \times \mathcal{X} \times \Theta \to \mathbb{R}$, over Θ_n :

$$(1)_{\mathsf{q}} \circ - (\mathfrak{Z})_n \Delta_{\mathsf{r}} \circ = \operatorname{\mathsf{dus}}_{\Theta \ni \mathfrak{Z}} \leq (\mathfrak{r})_n \Delta_{\Theta \ni \mathfrak{Z}}$$

• The NN test statistic is given by

$$[{}^{u}_{\mathcal{J}}]\phi = (x)\eta \rho_{z}\left(\frac{\chi \rho}{(x)^{u} \mathcal{J} \rho}\right)^{\mathcal{X}} \int = {}^{l}_{u} \chi$$

- We will use the asymptotic $(n \to \infty)$ distribution of λ_j^n for testing the null since a bootstrap approach would typically be too computationally expensive
- Asymptotic distribution of f_n
- 🛽 Dontem balab lenoitenu 🖉
- In the large-n regime, due to the universal approximation property, we are actually performing inference on the "ground truth" fo (model-free inference)

Asymptotic distribution of NN estimator

I heorem

ıteni ∍muzeA

- $dP = vd\lambda$ for bounded and strictly positive v
- , (n) $O={}^{n} \lambda$ solves the NN satisfies $K_{n}^{2+1/d}$ log $\mathcal{K}_{n}=O(n),$
- The loss function $I(y, x, g) = -\frac{1}{2}(y g(x))^2$.

uəy_

$$_{\star} u \leftarrow (\ell^{u} - \ell^{0}) \Longrightarrow \mu_{\star}$$

in $(\Theta, L^2(P))$ where

$$u^{\frac{1+\rho}{1+\rho}}\left(\frac{\log u}{u}\right) = u^{\frac{1}{2}}$$

and h^* is the argmax of the Gaussian process { $\mathbb{G}_f : f \in \Theta$ } with mean zero and $Cov(\mathbb{G}_s, \mathbb{G}_t) = 4\sigma^2 \mathbb{E}(s(X)t(X))$.

:((8991) non2 bus not Chen and Chen and Shen (Chen and Shen (1

$$\mathbb{E}^{X}[(\mathfrak{t}^{u}(X)-\mathfrak{t}^{0}(X))_{5}]=O^{b}(\mathfrak{t}^{u}_{-1})$$

assuming the number of hidden units \mathcal{K}_n is chosen such that $\mathcal{K}_n^{2,1/d}\log\mathcal{K}_n=O(n)$

- Proof uses empirical process arguments
- Estimation rate implies tightness of $h_n = r_n(f_n f_0)$
- Rescaled and shifted criterion function converges weakly to Gaussian process
- Gaussian process has a unique maximum at h^*
- Argmax continuous mapping theorem

Asymptotic distribution of test statistic

Theorem

Under the conditions of Theorem 1 and the null hypothesis,

$$r_n^2 \lambda_j^n \Longrightarrow \int_{\mathcal{X}} \left(\frac{\partial h^*(x)}{\partial x_j}\right)^2 d\mu(x)$$

Theorem

Assume $\mu = P$ so that the test statistic

$$\lambda_j^n = \mathbb{E}_X \left[\left(\frac{\partial f_n(X)}{\partial x_j} \right)^2 \right]$$

Under the conditions of Theorem 1 and the null hypothesis, the empirical test statistic satisfies

$$r_n^2 n^{-1} \sum_{i=1}^n \left(\frac{\partial f_n(X_i)}{\partial x_j} \right)^2 \Longrightarrow \mathbb{E}_X \left[\left(\frac{\partial h^*(X)}{\partial x_j} \right)^2 \right]$$

Theorem

Take $\mu = P$. Let $\{\phi_i\}$ be an orthonormal basis of Θ . If that basis is C^1 and stable under differentiation, then

$$\mathbb{E}_{X}\left[\left(\frac{\partial h^{\star}(X)}{\partial x_{j}}\right)^{2}\right] = \frac{B^{2}}{\sum_{i=0}^{\infty}\frac{\chi_{i}^{2}}{d_{i}^{2}}}\sum_{i=0}^{\infty}\frac{\alpha_{i,j}^{2}}{d_{i}^{4}}\chi_{i}^{2},$$

where $\{\chi_i^2\}$ are *i.i.d.* samples from the chi-square distribution, and where $\alpha_{i,j} \in \mathbb{R}$ satisfies $\frac{\partial \phi_i}{\partial x_j} = \alpha_{i,j} \phi_{k(i)}$ for some $k : \mathbb{N} \to \mathbb{N}$, and the d_i 's are certain functions of the $\alpha_{i,i}$'s.

- Truncate the infinite sum at some finite order N
- \bullet Draw samples from the χ^2 distribution to construct a sample of the approximate limiting law
- Repeat *m* times and compute the empirical quantile $Q_{N,m}$ at level $\alpha \in (0, 1)$ of the corresponding samples
- If $m = m_N \to \infty$ as $N \to \infty$, then Q_{N,m_N} is a consistent estimator of the true quantile of interest
- Reject H_0 if $\lambda_j^n > Q_{N,m_N}(1-\alpha)$ such that the test will be asymptotically of level α :

$$\mathfrak{D} \geq \left((\mathfrak{D} - \mathfrak{l})_{\mathsf{N}\mathfrak{M},\mathsf{N}} \mathcal{Q} < \overset{n}{\mathfrak{l}} \chi \right)_{\mathfrak{O}} \mathcal{H}^{\mathbb{T}}$$

seldeisev 8 •

$$^{8}(\mathfrak{l},\mathfrak{l}-)\cup\sim(_{8}X,\ldots,_{1}X)=X$$

פגסחום בנחבף:

$$Y = 8 + X_2^1 + X_2X_3 + \cos(X_4) + \exp(X_5X_6) + 0.1X_7 + \epsilon$$

where $\epsilon \sim N(0, 0.01^2)$ and X_8 has no influence on Y • Training (via TensorFlow): 100,000 samples (Y_i, X_i) Validation, Testing: 10,000 samples each

0.35	Linear Regression	
$(imes)^{-4} \sim Var(\epsilon)$	dS = X dtim NN	
Mean Squared Error	ləboM	

Variable	coef	std err	t	P > t
const	10.2297	0.002	5459.250	0.000
1	-0.0031	0.003	-0.964	0.335
2	0.0051	0.003	1.561	0.118
3	-0.0026	0.003	-0.800	0.424
4	0.0003	0.003	0.085	0.932
5	0.0016	0.003	0.493	0.622
6	-0.0033	0.003	-1.035	0.300
7	0.0976	0.003	30.059	0.000
8	-0.0018	0.003	-0.563	0.573

Only the intercept and the linear term $0.1X_7$ are identified as significant. The irrelevant X_8 is correctly identified as insignificant.

NN test statistic (5% level; 100 experiments; Fourier basis)

∂0.0 < £1.0	4 [.] 500·10 ₋₀	8
Ţ	$1.010 \cdot 10^{-2} (= 0.1^{2})$	L
Ţ	674.0	9
Ţ	0.480	G
Ţ	292.0	4
Ţ	0.331	3
τ	0.332	5
Ţ	1.310	Ţ
Power/Size	Test Statistic	Variable

- Size: asymptotic distribution tends to underestimate the variance of the finite sample distribution of the test statistic
- Efficiency: gradient (TensorFlow), no re-fitting required
- Robustness: insensitive to correlated feature data

- Data: 120+ million housing sales from county registrar of deed offices across the US (source: CoreLogic)
- Sample period: 1970 to 2017
- Geographical area: Merced County, CA; 76,247 samples
- Prediction of $Y = \log$ sale price
- Variables X(d = 68): Bedrooms, Full-Baths, Last-Sale-Amount, N-Originations, N-Past-Sales, Sale-Month, SqFt, Stories, Tax-Amount, Time-Since-Prior-Sale, etc.
- Training and gradients via TensorFlow, Adam
- Validation (70/20/10 split): K = 150 nodes, L_1 weight 10⁻⁵
- ∂₽.0 si ∃2M test •

Application: House price valuation

Top 10 significant (5%) variables (out of 68)

Variable Name	Test Statistic
Last_Sale_Amount	1.640
Tax_Land_Square_Footage	1.615
Sale_Month_No	1.340
Tax_Amount	0.383
Last_Mortgage_Amount	0.104
Tax_Assd_Total_Value	0.081
Tax_Improvement_Value_Calc	0.072
Tax_Land_Value_Calc	0.069
Year₋Built	0.068
SqFt	0.056

- We develop a computationally efficient, pivotal significance test for neural networks
- Assess the impact of feature variables on the prediction
- Rank variables according to their predictive importance
- This opens up a broader range of applications of NNs in financial practice
- Ongoing work
- Treatment of NN classifiers and deep networks
- Cross derivatives for testing interactions between variables
- Alternative approaches

- [1,1-] no minform .i.i.d. are i.i.d. uniform on [-1,1] ${ \circ}$
- Using the Fourier basis, the limiting distribution takes the form

$$\frac{\sum^{u\in\mathbb{N}^{q}}\frac{q_{y}^{u}}{\chi_{y}^{u}}}{B_{z}}\sum^{u\in\mathbb{N}^{q}}\frac{q_{y}^{u}}{u_{z}^{t}u_{z}^{u}}\chi_{z}^{u},$$

$$\mathbf{d}_n^{\mathsf{r}} = \sum_{|\alpha| \leq \lfloor \frac{d}{2} \rfloor + 2} \prod_{k=1}^{d} (n_{k,\pi} \pi)^{2\alpha_k}$$

• $\{\chi^a_{\chi}\}_{n\in\mathbb{N}^d}$ are i.i.d. chi-square variables

- We note that Θ is a subspace of the Hilbert space $L^2(P)$ which admits an orthonormal basis $\{\phi_i\}_{i=0}^{\infty}$
- If this basis is C^1 and stable under differentiation, i.e. if there are a real $\alpha_{i,j}$ and a mapping $k:\mathbb{N}\to\mathbb{N}$ such that

then there exists an invertible operator D such that

$$\|\xi\|_{\Sigma^{k,2}}^{K,2} = \|D\xi\|_{\Sigma^{2}(\mathbf{b})}^{\Gamma_{2}(\mathbf{b})} = \sum_{\infty}^{\infty} q_{\Sigma}^{1} \langle \xi, \phi_{1} \rangle_{\Sigma^{2}(\mathbf{b})}^{\Gamma_{2}(\mathbf{b})}$$

where the d_i^{ls} are certain functions of the $\alpha_{i,l}^{ls}$